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ABSTRACT

The devel opment and eval uatlion of new theoretical and numerical approaches

for strongly nonlinear finite 41emnent analysis are reported. The elemet

technology uses interior nodes to create higher order in-plane displace-

ment form needed for nonlirnear strain calculation. 
Several solution pro-

cedure types are discussee, based 
on an updated total Lagrangian formulation.

Progress with this approach and current 
capability levels are discussed.
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1.0 INTRODUCTION

This report contains a summary of progress on AFOSR contract F49620-79-C-0057

on nonlinear finite element analysis and outlines suggested further research.

Section 2.1 begins by describing the deficiencies in the state-of-the-art in

nonlinear analysis as they relate to and have motivated the present research.

Section 2.2 discusses methodology and progress in the current contract in

detail. Section 2.3 presents results for several large deflection problems

for beams, addressing features of the nonlinear behav*ior which illustrate

both the advantages and the deficiencies of the developed methods. Section

2.4 suggests areas for future studies related to the work. Append.ices A and B

provide technical details on two areas of development which are briefly dis-

cussed in Sections 2.1 and 2.2, but for which the reader may desire

clarification. Appendix C reproduces portions of the proposal (Reference 5)

for the present contract, for convenient reference in the present context.

The goal of the present research has been the development and evaluation of

improved displacement-method finite element approaches for the analysis of

structural problems with geometrical nonlinearities. The initial work in

this subject was done by Haftka, Mallett and Nachbar in reference 1. Further

work by Jones (References 2, 3, 4) followed along the lines outlined in

reference 1. Reference 3 concluded that an improved approach could be devel-

oped through new finite element formulations coupled with a stepwise non-

linear solution procedure. Reference 5 proposed and outlined the development

of these new approaches, which have been pursued in the present AFOSR-

sponsored research and are reported herein.

There are three technical areas associated with geometrically nonlinear

finite 'lement analysis which require investigation in order to achieve the
desired research results. These are introduced briefly here in order to put

into perspective more detailed discussions in the sections which follow.
First, it is required to derive a new type of finite element which is

numerically well behaved when the 'otal nonlinear deformations are retained

in analysis. This requirement addresses the role of the nonlinear contribu-

tions to the stresses as major controlling factors in the equilibrium state.
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With conventional elements, retaining these stresses results In serious

errors with consequent incorrectly convergent, or, frequently, divergent

solution calculations. Secondly, it-is required to develop geometrical

representations of the deformations which avoid any cumulative inconsistency

between the deformations and the displacements. Such errors cannot be elimi-

nated by iteration. Finally, it is required to develop improved stepwise

solution procedures, with residual load iteration, which are convergent for

large load steps. The presence of large residual loads caused by the

nonlinear deformations often causes failure of conventional solution

procedures. These three requirements adoress proven deficiencies in the

application of conventional finite element methods to strongly nonlinear-

analysis, as manifested by both unacceptable inaccuracies in problem solu-

tions and serious difficulties in obtaining convergent stepwise solution

processes.

2

|.

.--



2.0 TECHNICAL DISCUSSION

This section discusses the goals of the present research, progress on the

current contract, and recommended areas for further research.

2.1 Goals and Approach of Current Research

The physical problems which have motivated the current research primarily

involve those structures in which the nonlinearly induced stresses due to

large rotations are critical in determining the correct equilibrium state of

the structure. Examples of such problems include such difficult problems as

the buckling of shells and the postbuckling action of panels, and also simple

cases such as the stretching of cables and bending of beams. In all of these

casc it is necessary to include a complete and accurate description of the

nonlinear stress field within the structure in order to correctly address the

equilibrium problem. In general, finite element analysis has encountered a

great deal of difficulty in doing this. The difficulties arise because

conventional element formulations retaining complete nonlinear stress calcu-

lations encounter several fundamental problems. One of these problems, and

that which requires the development of new types of elements, is that the

nonlinearly induced stresses include physically unrealistic components which

become "locked" within the elements, unremovable except by major reduction of
the displacement magnitudes. This causes excessive structural stiffness and
results in inaccurate problem solutions. Another problem is that, due to

including the nonlinear stresses, the solution procedure is required to deal

with very large residual loads in the iterative portion of the calculation

process. It is usually found that such large residual loads cause solutiun

divergence or excessively slow convergence and very large computational

costs. This difficulty requires the development of solution procedures which

are improved in character and tailored specifically to problems having large

nonlinear, stresses.

An additional difficulty is that in problems of the types under discussion

there are generally large rotations and corresponding deformations which are

computed in a stepwise manner during the solution process. Total deformations
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are often determined by summing increments. This approach can cause cumula-
tive errors in the solution which are not correctable through the residual

load iteration process. There areseveral sources of such errors. The first

and that most comnonly encountered in conventional approaches is a cumulat've
error in the strains caused by the determination of the strain through step-
wise incrementation. This error results from linearization of the strain

increments, and is usually quite large. A second source of error occurs in
cases having moderately large rotations in three dimensions. The representa-
tion of such three-dimensional rotations through I ncrementation of cartesian
rotations will cause both incorrect total nonlinear strains and also a cumula-

tive error in the orientation of the structure in space. The error will make
the strains inconsistent with the true total displaceent and rotation state,

and hence is not recoverable through residual load iteration. This rotation
problem must be solved in order to dcvelop finite element procedures which are

appl icable to such problems as the combi ned 1 ateral and torsional nonlinear
deformation of beam structures. Another type of error occurs in total Lagran-

gian formulations, and results from an exchange of roles between the bending

and manbrane diselacements when the rotations become large.

The above discussions point clearly to three primary technical goals for the
current research. The first is the development of new element types which are
formulated specifically for including complete nonlinear strains in finite

element calculations. The beam and shell elements under developnent in this
research accomplish this through the use of interior modes to incorporate
higher order axial (beam) and membrane (plate, sheil) displacement functicns.

The second primary goal is to avoid unrecoverable cumulative error, that is,
any type of error which is unrecognized, and hence uncorrectable, by the
residual load iteration process. The cumulative errors due to incrementing
element strains in a stepwise procedure have bee." avoided by computing the

total nonlinear strains directly, rather than by incrementation. A total
Lagrangian formulation with updating is used to accomplish this. The cumula-

tive error in the structural rotation state due to summing cartesian rotation
increments has beer avoided through a rigorous three-dimensional rotation

description. In this approach, the rotation state, both total and

4



incremental, is represented by three sequenced angles, called Euler angles,
which uniquely define the tntal rotation state for arbitrarily large muticns.
This appears to be a new approach in finite element formulations.

The third primary goal is technically distinct from the finite element
research of the work, but was necessary in order to achieve numerical verifi-
cations of the element technology. It is the development of solution proced-
ures which are rapidly convergent despite the numerical difficulties inherent
in the solution process for strongly nonlinear problems. Several approaches
have been investigated in thi s regard. The initial approach used an
internally nonlinear stepwise solution procedure with iteration of the resid-
ual load state after each load step. The nonlinear stepwise capability was
based on the static perturbation procedure (References 6, 7, 8). Additional
means to convergence acceleration were found necessary in conjunction with
the static perturbation method, these are discussed in Section 2.2. Ulti-
mately, this approach was found inadequate (except for small load steps and
moderately small displacements), and a method utilizing adaptive modification
of the structural stiffness matrix (the BFGS method, reference 10) was suc-
•cessfully implemented in place of the static perturbation method.

The total set of technical goals for the present research include, in addition
to the three primary goals described above, a number of important secondary

items. These have been grouped into two categories. The first category
relates to the matter of suitable finite element strain displacement equa-
tions. It is required that the basic rules governing finite element displace-
ment states and strain-displacement relations be followed: the element can
undergo rigid body displacements and constant strain states; large rigid body
motions must not cause element deformations. These requirements are met by
using cartesian-based elemental coordinate systems. Other requirements
relate to the degree of approximation of the nonlinear portions of the strain-
di spl acement equati ons and the accurate representation of geometry for shell
el mevts. It is necessary to keep the strain-displacement equations simple
and amenable to numerical processing as large displacements and rotations
develop. In particular, it is required to avoid the complexity of a nonlinear
shel l stral n di spl acement formul ation of the I ntri nsi c coordi nate type. The



use of the Marguerre type of strain formulation, together with element local
coordinate system updating, has fulfilled these requirenents. The second

category relates to generality of solution procedures. It was originally
intended that the solution procedures developed in this work be applicable to
an extended set of of problem types including buckling (bifurcation, limit

points and snap through), and also that the solution procedure be extendable
to the case of dynamic response calculations where strong nonlinearities are
present. The static perturbation approach appeared to have the potential to
satisfy these requirements. The difficulties in achieving convergence of
nonlinear stepwise solutions with the static perturbation method, and the

adoption of the BFGS method for this purpose, have necessarily modified the
original plan to develop a solution procedure with direct applicability to

both dynamics and buckling problems.

2.2 Progress of Current Research

In the work accomplished to date the theoretical development of the finite

element formulations for the new type of two-dimensional and three-dimens-
ional beam elements has been completed and the Euler angle theory for both the

beam elements and the plate and shell elements has been developed. By calcu-
lations, it has been demonstrated that the type of element formulation under

development is completely successful in handling the large stresses inherent

in the large rotation nonlinear state. A technically advanced set of solution

procedure algorithms has been developed, refined and verified through numeri-

cal studies using a two-dimensional beam element code. The solution proced-
ures appear to be rapicily convergent for large step sizes and stronn nonline-
arities. A number of technical difficulties, some expected aid some unantici-
pated, have been encountered. The discussion which follows attempts to

describe the chronology of the work accomplished and its present status,
covering each task and difficulty in some detail.

The current research began with the development of the element technology for
a curved beam element whose i niti al shape and subsequent deformation are

constrained to take place in a single plane. This has been called the 2-D

beam element (see Appendix C, Section 2.2 and Figure 1). The element has five
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nodes: nodes 1 and 5 are the end nodes; k, 3, and 4 are internal. In its

present form, the nodes are equally spaced along the length of the element.
Nodes 1, 3 and 5 each have three freedoms, includinr the axial displacement,

the lateral or bending displacement, and the bending rotation. Nodes 2 and 4

have only the axial displacement freedom. This unique nodal and freedom

arrangement provides axial displacements which are quartic functions and

bending displacements and rotations which are quadratic. By this means accur-

ate stress and strain representations are obtained despite the rotations

present in strongly nonlinear problems (see discussion in Appendix C, Section

2.2, Stability Elements). The development of this element encountered sev-

eral technical difficulties related to its unusual nodal and freedom arrange-
ment and in regard tc geometrical updating. For example, in performing a

rotational updating transformation, the calculation of the transformed values

of the axial freedoms at nodes 2 or 4 requires including in the transformation

the potentially large bend'Ig displacements at these nodes. Since the bending

displacement is not an avilable freedom at rodes 2 and 4, its value must be

generated by interpolatin using the bending displacement values at nodes 1, 3

and 5. Related difficulties are encountered in transforming the loading on

the beam element. The coupling together of the axial and bending displace-

ments (or loads) in such updating transformations is the means by which any

small angle approximations used in the nonlinear strain equations are removed

by updating. This has implications regarding the performance of solution proce-

dures, the calculation of residual loads, and the criteria controlling updating.

The next step in the research was the development of solution procedures

appropriate to the implementation of the 2-D beam element. The solution
procedure development was based on the static perturbation method of the

second order (the static perturbation method is discussed in Appendix C,

Section 2.2, Nonlinear Ste Static Solution Procedure, and also in a mathe-
matical derivation starting on page C30 of Appendix C. See also Appendix A,

oage Al, for a discussion of path parameters). In this formulation, the

structural displacements are expressed as a second degree Taylor series in a

path parameter. The path parameter is the Taylor series argument. In the

initial development of this theory the path parameter was the load itself.

7i
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That is, the structural displacements were expressed as a second order Taylor

series in the load. This approach is computationally simple and provides
excellent results for many types of problems. It presumes that the displace-

ments are well behaved functions of the load, and in particular that displace-
ments cannot occur without corresponding changes in the value of the load.

Hence this approach would be unsuitable for buckling problems, in which dis-

placements can occur at constant or nearly constant load.

A proof-of-concept computer program was written to implement this procedure

in conjunction with the 2-D beam element. The program was designed to have

maximum adaptability to future extensions of element technology. In nuneri-
cal work with this computer program, the surprising result was found that for

certain problem types (large rotations with very small axial stresses) the

second order static perturbation procedure often displayed poor convergence

or even divergence unless the applied load steps were made small. In an

attempt to improve this situation the static perturbation procedure was
extended to include the third degree Taylor series terms. This extension led
to a great deal of complexity, both in the area of theory development and also
in coding work, and produced disappointing results. In numerical work it was

found that the second order approach consistently performed better than the

substantially more complex third order formulation. A considerable anount cf

study was done to explain this unexpected result and to understand more fully
the behavior of the second and third order formulations.

It was determined that the second order procedure provides corrective dis-
placements which primarily reduce errors in the axial force equilibrium

state. The third order process, on the other hand, primarily provides correc-

tive bending displacements in order to reduce errors in the bending (lateral)

load equilibrium state. The static perturbation approaches accomplish these

corrections through a type of residual load evaluation, which is made using
only the start-of-step geometry and deformation description of the structure.

Since this start-of-step state is approximate in its ability to forecast end-
of-step residual loads, a corresponding approximation occurs in the static
perturbation corrective displacement values. In contrast, corrective

displacements computed by the stepwise iterative process, using rigorous,
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end-of-step evaluated residual loads, are able to respond exactly to the

nonlinearity-induced errors which have occurred duri ng a given load incre-

ment. IIn geometrically nonlinear analysis, axial equilibrium corrections are

crucially important, because the axial forces combine with the rotations to
produce potentially large bending equilibrium errors. Hence the second order

static perturbation, despite its approximate nature, is beneficial to solu-

tion coavergence. On the other hand, errors in bending displacement predic-

tion can be crucially damaginn to solution convergence, because of their

potential to cause large rotations, nonlinear aial strains, and hence large

axial force errors. Hence the approximations in the bending displacement

corrections computed by the third order static perturbation process appear

unacceptable. It was concluded for this reason that conventional static

perturbation of the second order is superior to the third order procedure for

geometrically nonlinear analysis of "thin" structures (beams, plates,

shells).

At this point in the research it was felt worthwhile to extend the static
perturbation approach to a more general type of formulation, in which the
Taylor series path parameter is deformation-related (Appendix A discusses the
path parameter in detail). A useful path parameter of this type is similar to

the structural strait, energy function, taking the form
s2 T

S K A

where S is the path parameter, K is the tangent stiffness matrix, and &q is

the incremental displacement of any load (cr iteration) step. This type of

path parameter has the advantage of applicability to buckling problems. It

was felt that calculations using this particular type of path parrneter might

shed some light on the overall behavior of the static perturh:tion process in

the types of problems under study. This particular extension again led to a

great deal of complexity, in both theory and numerical approach. Numerical

work with this approach was again disappointing, and showed that for problems

in which the displacements are well behaved functions of the load, the energy-

based path parameter formulation does not provide any advantages over the

9



load-based path parameter approach. Only in cases in which the load-displace-

ment relationship is poorly behaved, as occurs in buckling problems, would the

generality of this approach be advantageous.

In order to obtain improved solution procedure performance, recourse was made

to methods developed during previous experience (prior AFOSR contract, refer-

ences 3, 4) in nonlinear analysis of beams and plates. In this work it had

been concluded that the axial force equilibrim errors are primarily a result

of bending displacements which take place without perfectly "matched" axial

displacements. The axial force errors are usually very large. Together with

the rotations they cause large error loads acting on the relitively flexible

bending displacements. This, in turn, causes further bending displacement

errors with even larger axial force errors. Thus, the errors in the axial

forces have a tendency to magnify themselves and cause divergent calcula-

tions. In the previous work it was found that a successful method of accele-

rating convergence i s to perform resi dual load iterations for the si ngle

purpose of "matching" the axial displacements to the bending displacements,

thus removing the axial load equilibrium errors. This is implemented by a

solution procedure employing "alternate-freedom" iterative corrections. In

this procedure, the first incremental displacement of a load step includes all

of the freedoms of the finite element model. The next increment is the first

iteration. It only includes the axial/membrane freedoms, and thereby relaxes

the axial/membrane force errors. The next increment is the second iteration;

it includes all freedoms. The third iteration includes only the axial/mem-

brane freedoms, and so on. It has been found that, despite element curvature

and prior deformation, in each axial/membrane-freedom-only iterative correc-

tion the axial/membrane force equilibrium errors are significaitly reduced.

This prevents these errors from causing, in the subsequent iteration, large
bending displacement errors. This type of solution procedure always accele-

rates convergence, and often achieves convergent solutions where other

approaches encounter divergence. The alternate-freedom-iteration procedure

was added to the static perturbation method to achieve a combined process
having the benefits of both procedures. The extension was accomplished such

that both the all-freedom and the axial/membrane freedom iterations are per-

formed by the static perturbation procedure.

10
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In calculations done with this method, it was found that the bending moment
residual loads tended to remain excessive after the axial/membrane and trans-

verse load residuals were reduced to relatively small values. Consequently,
the alternate-freedom-iteration procedure was modified to include both the
axial/membrane freedoms and the rotational freedoms. In this form the solu-
tion procedure appeared optimum.

The above-di sr.ussed soluti on procedure functioned well for problems with
moderate displacements and rotations, but diverged when very large displace-
ments (e.g., half the length for a simpile end-loaded cantilever) were compu-
ted. To prevent the divergence, a procedure called a "line-search" was

implemented. In this method, the amplitude of a computed displacement incre-
ment is scaled, or optimized, in such a way as to minimize the solution

errors, as measured by residual load magnitudes, which correspond to the total
displacements at the end of the increment. This avoids tije use of a computed
increment where that increment would increase, rather than decrease, the
residual loads. The implementation involves evaluating a measure of the
error; e.g., the root-sum-square of the residual loads, for several ampli-
tudes of the computed increment, and interpolating on the anplitude to obtain

a minimum error. The interpolation includes the axial/membrane/rotational

iteration corrections. This approach performed well, particularly when

employed with judicious updating of the structural stiffness matrix in order
to assure that the "shape" of the computed increment is a good one. If the

stiffness matrix is not updated, it sometimes occurs that the relative magni-
tudes of the incremental values of the structural freedoms, i.e., the "shape"
of the increment, is sufficiently inaccurate that even a near zero amplitude

of the computed increment will increase the error level. In this case the
line-search fails, and an accurate problem solution is not obtained.

To avoid this difficulty, a method based on stepwise modification of the

structural stiffness mat-'x can be used. Such an approach involves stepwise
modifications of the s " ,,ness matrix such that the matrix to be used for the
next increment is the une which, had it been used for the last increment,
would have produced an accurate incremental nonlinear response to the step-
wise incremental loads. The procedure implemented was the BFGS method,

II



described in reference 10. The BFGS method requires a line-search for each

increment; the above-described line-search method appears suitable and was

used, though it differs somewhat from the one discussed in reference 10. The

use of the axial/membrane/rotational iterations, described earlier, was found

to be still necessary for convergence, and this procedure was combined with

the BFGS approach as follows. Each iterative increment was corrected by an

axial/membrane/rotational iteration, and the "double increment" thus cumputed

was subjected to a line-search. The axial/membrane/rotatidnal correction was

separately computed for each interpolation amplitude of the line-search, in

order to account properly for the effects of nonlinearities. Without these

carrections, the line-search always fails. The residual loads resulting

after the increment are compared with those imposed at the start of the

increment, resulting in the transformation matrix of the BFGS method.

The solution procedure described above was found to be uniformly convergent

for both large and small displacements and for large load step sizes. I.,

addition, the convergence was found to be rapid (typically 15 or less itera-

tions). However, the convergence limit is to a nonzero error level which

cannot be improved upon by further iterations. This minimum error level is a A

function of the amplitude of the displacements and also appears to be influ-

enced by the transformations associated with geometrical updates of the ele-

ment baseplanes. For the case of a simple cantilever beam, good accuracy is

obtained when the end displacement is less than about half the length of the

beam. This appears to be true whether one or more elements are used in the

fir,ite element model. Thc intentions of the current work are to handle much

larger displacements than this apparent limitation.

A number of numerical experiments were carried out in attempts to understand

und eliminate the minimun error level problem. These included: comparisons

between results when the transverse shear and extensional deformations are

represented by strain equations permit.'ing large, as opposed to moderate,

rotations; elimination (in deformation and residual loads calculations) of the

quadratic-in-x component of the transverse shear strain; the use of double-

precision arithmetic in the geometrical updating calculations; computing

large deflection solutions with-and-without geometrical and stiffness matrix

12
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updates. The numerical experiments involving the large rotation strain

equations improved but did not eliminate the minimum error level problem.
The use of double precision geometrical update calculations resulted in

so ewhat modified solutions, indicating numerical sensitivity in this type
J( of calculation. This suggests the probable need for extension to double

precision arithmetic in all stress, deformation, and load computations.

However, the minimum error level was not appreciably affected by this

experiment.

Through omission of geometrical updating, it was found that the minimum error

level could be made essentially zero. However, this is not a satisfactory

solution to the problem, because it leads to a non-updated total Lagrangian

approach which is subject to important limitations and errors. In particular,

the desirable cmission of certain normally negligible terms in the nonlinear

strain equations is not admissible for a non-updated total Lagrangian
approach. The geometrical updating used in the present approach is considered

a valuable feature, not to be omitted as a solution to the minimum error
problem. What has been gained through the geometrical updating experiment is:

it has been verified that the element itself is capable of a "zero" error
level in the large displacement state; it is clearly indicated that the

geometrical updating introduces displacement and deformation forms which for

some reason are not satisfactorily handled by the iterative solution proce-
dure. It appears that the transverse shear strain becomes "locked" in the

element, causing the nonzero minimum error level. Whether the fault lies in
the element itself, or in the solution procedure, is not clear. It appears

that the element should provide convergence to a correct shear strain and

stress, since without geometrical updating it does so, and also since its
nodal and freedom arrangements and its elemental coordinate system satisfy

the required rigid motion and constant strain conditions. On the other hand,

recent literature suggests that similar elements (though without the same
internal nodes and freedoms) may have problems of a similar nature to those

encountered in the present work (References 11, 12). Thus, tne possibility of

an element-level problem cannot yet be dismissed.

13
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The total requirements for the solution procedure include a number of options
in addition to those of the basic iteration process discussed above. Other

needed features include: conditional geometrical updating of element local

coordinate systems and displacement states; conditional updating of the

stiffness matrix, with separate handling of the linearized portion of the
matrix and the stress-dependent ("geometric stiffness") portion; conditional
controls on solution continuance or termination; limits on the number of
geometrical and stiffness updates and on the error measure which constitutes

convergence,

The developed solution procedure contains user options for controlling all of
these items. Table 1 gives a brief summary of the total set of solut;Jn

procedure options. The static perturbation controls are covered in part (a),
and the controls over the entire procedure (as currently coded) are given in

part (b). One 4tem which requires further discussion is the conditional
updating of the stiffness matrix. The total stiffness matrix is the sum of

the basic stiffness matrix and the geometric stiffness matrix. The updating
of the basic matrix and the geometric matrix are not necessarily done at the
same time, because the geometric matrix contains the stresses themselves. It
is not satisfactory to update the geometric stiffness matrix when the stresses

have relatively large errors. For this reason, the updating of the geometric
stiffness matrix is only permitted when the error state of the solution is

within certain bounds controlled by parameters within the code.

It was felt worthwhile to evaluate the new nonlinear element in comparison

with conventional finite element approaches, in application to -onlinear

analysis. In order for such a comparison to be valid, it must be made with the

two element types having all features in common, i.e., solution procedure,
element nodal and freedom formulation, all updating and transformations,
etc., except for the single basic feature which distinguishes the new element:
the use of higher order axial/membrane freedoms in combination with lower

order bending freedoms. In order to accomplish the required comparison, the
new element was provided with a special solution procedure option: a solution
procedure constraint was developed which constrains the axial freedoms at
nodes 2, 3 and 4 to values which are the interpolated values at these nodes of

14
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an element whose axial displacements are linear functions (a conventional

axial displacement function). This constraint process is of the type called
"multi-point constraint", and is implementeo by a set of matrix transforma-

tions. It permits the element to be used in ei'.er its "nonlinear" mode of
behavior, or in a conventional mode, with all other computational processes
unchanged. As noted in Table 1, this option is effected by input of the value

OPT2 - negative. Calculations made with this option converged very slowly to
erroneous results, verifying that the conventional type of element is
unsuited to the accurate computation of highly nonlinear problems. Section

2.3 discusses these results, which are in complete agreement with the earlier
results of Haftka, Mallett and Nachbar (Reference 1). This capability was
used in the static perturbation version of the code, and is not currently

operative in the BFGS version.

Theory was developed for a beam element capable of bending anid twisting in
three-dimensions, called herein the 3-D beam element. This type of element is
required for problems such as the nonlinear bending and torsional deformation
and buckling of beam structures. A difficult technical problem arises at the

outset of this type of derivation. It is recalle 4 that one of the goals of the
present research is to avoid unrecoverable cumulative error in the problem

solution. A principle offender in this regard is the calculation of the
strain itself. To avoid such errors, the deformation must be determined by
direct calculation of the total strain, using the total displaced state of the
structure, rather than by strain incrementation. To do this requires a
precise definition of the rotation state. The three-dimensional beam element
undergoes three components of rotation. These include the twist and the two

bending rotations, ail of which can be large for nonlinear problems. In the
large rotation state the orientation of a rotated element or a node of an

element in space cannot be represented by arbitrarily ordered cartesian com-
ponents referred to a fixed coordinate system. Neither can the orientation be

arrived at by summing small rotations referred to cartesian systems. The
basic problem is that rotations are not vectors and therefore are not additive.

I N

15



A correct large rotation state can be obtained through the use of sequenced

angular rotations called Euler angler. Each Euler rotation takes place about

an axis which has been subjected to all prior rotations in the sequence, which

must take place in a specified order. This approach has been successfully
used for the calculation of large motions of spacecraft as well as other types

of large rotation dynamic problems (Reference 9). It is necessary to use this
approach to develop the 3-0 beam element. If the conventional small angle
(cartesian) approach were used, the strains would be inconsistent with the

rotation state of the structure, and it would be impossible to correct the
equilibrium configuration through the residual load iteration process.

Strain displacement relations based on Euler angles were not found in the
literature, and consequently a set of appropriate finite element deformation

equations had to be developed. The derivation was carried out using a tensor-
ial approach and convected coordinate systems. Appendix B describes the
approach in sae detail. This development presented a number of difficulties,
including: the need .- develop rational approximations associated with the

relative importance- of , iany different types of nonlinear terms In the
strain displacement relations; the deformati on-foll owing bean cross-sectional

axis system (Euler-angle-defined) does not maintain its "longitudinal" axis
along the bean centerline axis, and it is necessary to define an additional

Euler-angle-defined convected system which has this desirable property (see
Appendix B, Figure B5); it is necessary to determine incremental cartesian

bending and twist 4 ng angles as well as Euler increments, in order to maintain
physical reality in interpretation of the deformations and the loads. In
implementing the 3-D element together with a stepping solution procedure it is
necessary to use a large number of transformations of geometrical types, in

order to maintain and update tne different convected coordinate systems and
the two sets of Euler angle totals. One such transformation provides the

needed relationship between the stepwise Euler angle rotation increments and
the cartesian increments; the required transformation is celled the'flrtrans-

fonnation (Reference 9). Other transformations are required Zo transform the

stiffness matrix of the element from its derivation coordinate system to the

coordinate systems of the solution process; that is, to transform the stiff-
ness matrix from those definitions used in the strain displacement relations

4,
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to those which are suitable for merging together adjacent elenents and obtain-

ing the problem solution in terms of meaningful cartesian quant)tie6. Also,

in the solution procedure the coordinate systems used for each element are
convected, that is, they follow the elements throughout the deformation proc-

ess in order to retain for each element a small deformation state. Hence, it
is necessary to perform repeated transformations to accomplish the geometri-

cal updating of various solution and geometry perameters. The total solution

process for the 3-0 beam element has been flow-charted to provide a methodol-
ogy description suitable for computer coding. A computer code for this

element has been about 75% completed.

2.3 Illustrative Numerical Results

This section presents numerical results for several beam bending problems.

Results obtained with both the static perturbation method and the BFGS method

are discussed. The purpose of the example problems is to illustrate the
displacement magnitude capabilities, convergence characteristics, and 1 imi ta-

tions of the methods developed. Refer first to Figure 1. A simple two
element beam structure is bent by an end load in the global Z direction. The

loaded end of the beam is either completely free (Figure la) or constrained

against X -direction displacement (Figuie 1b). This problem was solved by the

static perturbation approach.

Tables 2-6 present numerical data for the beam structure of Figures la and lb.

The tables include deflections, rotations, axial forces in the elements, and

convergence data (numbers of iterations and percent error based on residual
loads). The two values of axial force shown in the tables for node 5 are those

computed for the two elements which connect to this mode.

Table 2 gives numerical results for the problem of Figure la. The load varies

from 0 to 720 (pounds), while the end deflection varies from 0 to 2.70

'inches). A graph of the deflection versus the load would be very nearly a

straight line, as the only nonlinearity in this problem results from the small

foreshortening of the beam due to its deflection and rotation. The deflection

of 2.70 in. is 93% of the theoretical value for this beam, a reasonable value

17
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for a two el ement model where each el ement has only a second degree di spl ace-
ment function capability in bending. The average rotation of element #2 at

720 lbs. is .189 radians. The average element rotation is the angle to which

the "baseplane" of th-a element is updated in geometrical updating. The table

shows the sequence of baseplane update angles for both elements. The deflec-

tion of 2.70 in. is 13.5% of the total beam length, an amplitude which is well

into the potentially nonlinear range in structural analysis. However, since

the right end of the beam is permitted to deflect freely, the beam is not

stressed axially due to nonlinear strain buildup, and the behavi or is essen-

tially linear. The payoff of the new nonlinear element in this case is that

it allows the axial stress to ignore the nonlinear strain effects, even though

fully nonlinear strain calculation is done in the analysis. This is accom-

plished by the quartic ax" al displacement flnction.

The element axial stresses are small and essentially constant over each ele-

ment. The jump in axial stress at node 5 balances a corresponding jump in the

shear at this node. Nearly constant axial stress in an element is required by

the equilibrium equations. The nonzero axial stress values are correct, and

result from the inclination of the end of the bcam with respect to the applied

load. This is iflustratcl in Figure 2. The figure gives the equations of

equilibriur ,ich must be satisfied by the shear and axial forces at the end

of the beam. It is seen that the inclination of the shear force requires the

axial st.-ess In the beam to be nonzero. The inclination of th, shear force

.an be accounted for either in the element strain formation or in the solution

procedu,- (by geometrical tuodating). To account for this in the strain

formulatior, it is necessary to retain nonlinear tems in the bean transverse

shear strain, a typez of nonlinearity not usually retained in geometrically

nonline r analysis. A simpler apprcach, and that used to compute the data

under discussion here, is to use the geometrical updating to rotate the shear

force. The result is that, at the 720 lb load, 707 lbs. is normal to the beam

(the shear, S) and 135 lbs is directed along the beam axis, producing the

axial stress shown in Table 2. These values are determined by the inclination

of the updated baseplane which is seen in the table to be .189 radians. The

* total load in the global Z direction remains 720 lbs. It is noted that at

18
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larger displacements the element stresses do not necessarily follow the sim-
ple line of explanation given. For such problems the solution converges to

give apparently erroneous stresses in some cases.

Faster convergence can usually be obtained if geometrical updating is done

infrequently. This is because the curved, updated geometry of the beam causes
the axial and be','"ng displacements to be nuinerically "coupled" much more than

they are In the Ii-tial flat, nonupdated geometry, and therefore slows the
iterative conz-trgence process. Th's suggests that solutions might be

obtained at lower cost by applying the total load in the first load step. In

this apprnach only one geometrical tipdating is required, corre,.ponding to the

final deflected state. Such a solution is shown on Table 3. The element #2

baseplane was updated in one step to the inclination of .193 radians, con-

sistent with the zero h iteration displacements, for which the displacement

at the end of the beam is 2.75 in. (final convergence was to 2.69 in.). The

computed displacements are almost identical to those of Table 2. The axial
stresses are slightly different because the baseplane is updated to a slightly
different angle than the .189 radians of Table 2. The results of Table 3 show
two important facts: the converged result for large loads can be obtained in
a single load step; certain aspects of the solution, such as the axial stress
in the present problem, may be sensitive to the inclination of the updated
baseplane, so that updating should not in general be neglected.

Geometrical updating is oly required when the element rotation relative to

the baseplane coordinate systems become large, e.g., greater than about 200.

Table 4 shows a case of delayed updating. Here the updating has been delayed

until the load reaches 660 lbs. The deflection results are nearly the same as

those of Table 2, but of course the axial stresses are no. correctly computed

until the baseplane is updated. Note that the final baseplane angles here
have resulted from a less recent update, and hence differ slightly from those

oF Table 3.

The problem of Figure lb has the global X displacement constrained at the
right end. This problem is highly nonlinear, typical in character to many

practically important cases involving end-or-edge-constrained beams and
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plates. The solution data are given in Table 5 and on Figure 3 for a load

range of 0 to 240 lbs. The baseplane in this exaynple is updated when the

average slope of the beam (relative -o the most recent baseplane update)

exceeds .01 radians. Convergence is reasonably fast except at the 180 lb.

load. The axial stresses are essentially constant over the lengths of the

elements, being dominated by the effect of the end constraint. They are

responsible for the nonlinear stiffening behavior illustrated by the force-

deflection plot of Figure 3. For larger load levels, the degree of non-

linearity of this problem increases very rapidly.

The next example concerns a "conventional" beam element. This element is

identical to the new nonlinear element except that the axial displacements at

the interior nodes are constrained to take values defined by linear interpo-

lation between the end node values. That is, these freedoms are in effect

omitted from the problem solution by constraining the axial displacement

shape to be the linear shape of the "simplex" type of element. In solving

problems with the constrai ned element, fully nonlinear axial strains due to

the bending displacements are retained, and the new nonlinear solution pro-

cedure is also used. Thus, the results provide a consistent comparison

between the new type of element and one of conventional formulation, with all
other aspects of the numerical processing kept the sane. The results are

tabulated in Table 6 for the load range of 0 to 240 lbs. and plotted on Figure

4. The solut4 in at 720 lbs. was computed in a single load step. The final

deflection at 720 lbs. is 1.57 in., which is considerably less than the 2.70

in. of the new nonlinear element. This error reflects the excessive and

erroneous stiffness of the conventional element due to the axial stresses

which are "locked" in this element by nonlinearity. The "simplex" axial

displacements cannot remove these locked-in axial stresses because of defi-

ciencies of their functional forms. The axial stresses are seen in the table

to be very large. The error illustrated by this example is consistent with

I that discussed in Reference 1. The new nonlinear element has eliminated this

type of error.

For displacements and rotations which are significantly larger than those of

the previous examples, convergence difficulties were encountered with the
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static perturbation approac&. As discussed in Section 2.2, the BFGS method

was implemented to improve convergence. In addition, the transverse shear

strain was modified to Incorporate nionlinear terms. The primary effect of
this modification is to rotate the resultant shrar force on the element so
that it is parallel to the deformed beam cross-section. This nas a relatively
small effect on problem solutions.

Figure 5 shows two cantilever beam problems which were solved with the PCGS

approach. Figures 5a and 5b show a single element problem, with the support

located both at the center of the element and at the left end. The problem of
Figure 5a requires no geometrical updating because the baseplane does not

rotate. It yields an exact solution for the rotations of the ends of the

beam. In contrast, the problem of Figure 5b has significant element baseplane
rotations requiring geometrical updating. The loading in both cases is a pure
moment, and the purposes of the example are to investigate the rate and degree

of convergence obtainable at large displacement and the influence of geo-
metrical updating on convergence and accuracy. Figure 6 shows dimensioned

sketches of the deflections fer both cases. For each problem, the figure also

shows the displaced condition referred to the coordinate system of the other
problem. These data are shown in parentheses. The deflections are large, on

the order of half the length of the beam. It is seen that the simple

cantilever element converges to a solution having 4% to 5% more curvature than

that for the doubly cantilevered (symmetrical) element. The cause of the

difference is almost certainly the geometrical updating required for the
simple cantilever case, which is not done in the symmetrical case. Conver-
gence for the symmetrical case occurs on the first iteration; it is much
slower for the case with geometrical updating. The values of the element
shear and axial stresses for the simple cantilever differ from those of the

symmetrical problem. This causes element (residual) loads which influence
solution convergence and accuracy, particularly for multi-element problems.

The cause of the numerical differences between these two solutions has not

been fully resolved. It appears doubtful that the differences arise due to

the element formulation itself, because the symmetrical problem yields an
exact solution. The simple cantilever case can clearly have exactly the same
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deformation state as the double cantilever, when referred to an updated base-
plane. Thus, the determination of residual loads, which is based on only

displ acements referred to the updated baseplane, i s potentially identical for
the two problems. It is likely that the BFGS solution procedure (which is

basically an optimrum-seeking type) has become trapped along a solution path

which has a false minimum error state. This view is strengthened by the fact

that frequently a regeneration cf the stiffness matrix in the deformed state,
followed by subsequent BFGS calculations, yields a substantially improved

solution accuracy. The extensive use of single precision arithmetic in the

code may also be a factor in the minimum error p,-nblem. It is also noted that
the geometrical updating of the axial displacement values at nodes 2 and 4
makes use of interpu,-4ed bending displacements at these nodes. The bending

displacements themselves are not updated for these nodes. However, if they

were updated, the resulting values would not adhere to the quadratic bending

displacement form when referred to the updated baseplane. This is a source of
inconsistency inherent in the uodating process, due to the different function

shapes used for the axial and bending displacements. This inconsistency
should, however, be correctable by residual load iteration.

2.4 Suggested Further Work

The element development appears to have successfully controlled the problem

of large nonlinear strains, as illustrated by the results shown on Figure 6

for the symmetrical cantilever. However, for more general cases, such as that
of the unsymmetrical case on Figure 6 and a number of multi-element problems

which have been solved, there remain unresolved problems in either the forimu-
lations or in the actual calculations. Displacements which are very large

have been successfully computed despite the difficulties encountered, how-

ever, and the potential of the new type of elenent appears to have been
adequately demonstrated. If the research is to be continued, the accuracy and

convergence difficulties will have to be addressed as a first step. The four

areas of study listed below are suggested candidates for this work.

o eliminate the use of single precision arithmetic in all suspect

calcutations.
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o investigate the possibility of the solution procedure being

"trapped" by a false minimum of the error level.

0 investdgate whether the limitation of the element to constant cur-

vature (w is quadratic) while simultaneously a quadratic rotation

is allowed is a cause of inconsistency which could contribute to

numerical problems.

It is expected that the numerical difficulties which still exist can be

resolved. In this event it appears particularly important to develop and test

the three-dimensional beam element. This work will evaluate the Euler angle

deformation theory and the set of geometrical transformations inherent in

this approach v'hich is new in the field of nonlinear finite element stress

analysis. The theory and procedural specifications have been completed and

the computer coding partially completed for this task.

If the three-dim~nsional beam element work shows the Euler angle theory to be

a valuable tool for large displacement finite element analysis, consideration
should be given to a further task. This task would apply the Euler angle

approach and the algorithms developed for the two-dimensional beam element to

the development of plate and shell elements. It would result in a truly large

deflection analysis method for plates and shells, leading eventually to a much

needed large displacement shell buckling analysis capability.
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ELEMENT 1 ELEMENT 2 ELEMENT 1 ELEMENT 2

NOEI NODE 5 NODE 9 NODE I NOD~E 5 NODE 9
z

20" - 20"

EA - 10xI0 6 (#) EA - 10x10 6 (#)

El a 6.6xi0 5 (# in2) El - 6.6xi0 5 (# in2)

GA - 4.44xi0 6 (#) GA - 4.44xi0 6 (#)

(a) FREE END (b) RESTRAINED END

Figure 1: Illustrative Cantilever Beam Problems
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ELEMENT
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BASEPLANE SHEAR FORCE IN BEAM
DUE TO BENDING

,1,TENSION FORCE
Z T IN BEAM

S coSE+ Tsin mP

-S sine + T cosaaO

Figure 2: Beam End Conditions for Large Rotations

24



*

0

.0
3-

=t
0 La..

U
N EuGa
I-
z

C
LU

LU 0
- (".4 Ga

3- C

I.- 40
= U,~iI 4

Ga~n
0 ~

LU

I

0
N C
-0

4..
U
Ga

I-

~0 EU 1o
0

~1

*1~ Hin 40. LVI N 3-
S 0 La..

IeI4~uI 0N3 IV NOI±~TU3U - Z

25

V



IA

goL
C

LL.

LU0

C*C

U-

2 I26



V2 43 5 Ml 2 3 4 5~

10 10

EA s 1 .0 x 0
EI = 6.6 x 10 6
GA =-1.11 x 1

(a) Double (Symmietrieal) (b) Simple Cantilever
Cantilever

Figure 5: Momient Loaded Single Element Cantilever Beam Examples
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10 in.

(.134) Simulated Undeformed Element
for Problem of Figure 6b

0 U .790 (Rad.)

Z(.25

Figure 6a: Simple Cantilever

Simulated Undeformed Element
for Problem of Figure 6a

Normal to Left-End
Cross-Section

w a .94

-.* 379 (Rad.) (.3

Z Figure 6b: Double (Symmetrical) Cantilever

Figure 6: Displacements of Single Element Cantilever Beam
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Table 1: Summary of Nonlinear Solution Procedure Controls
(a) OPTION CONTROLS

STATIC PATH PARAMETER "ALTERNATE""
PERTURBATION LOAD ENERGY ITERATION LINEARIZED "CONVENTIONAL"
ORDER TYPE TYPE NO YES SOLUTION ELEMENT

I OPT1- OPTI- Yes YesOPT N- o -1 1 OPT2=O OPT2Ul

2 Yes Yes OPT1a OPT1 N
OPT?"ZO OPTZ-2 -1 1 No No

Yes Yes OPTI- OPTNo
OPT2*30 OPT2u3 -L No No

E> OPTI and OPT2 are program input data.
t> First order static perturbation is standard stepwise solution -

Path parameter is always load-type In this case

It> Linearized solution omits all types of nonlinearities.
B Partial list given; includes principal control inputs.

(b) NUMERICAL CONTROLSr

INPUT DATAiNAE PROCESS CONTROLLED BY INPUT DATA

EPSCON: Allowable Error (Residual Loads) For Convergence

DALIM: Rotation of Element From Base Plane at Which
_Geometrical Update is Performed.

EQCHK: Rate of Divergence at Which Stiffness Matrix Update
is Performed.

RACHK: Error (Residual Loads) at Which Stiffness Matrix Updateis Performed.

ITRLIM,. Iteration and Updating Counts at Which
p "14 Solution is Aborted

DKCT: Required Minimum Number of Iterations Between Stiffness
Matrix Updates (Over-Rides E CHK, RACHK)
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APPENDIX A

Static Perturbation Path Paraneter

This Appendix outlines briefly the use of the load-based and deformation-

based path parameters in the static perturbation method. The equations given
herein are programmed in the 2-D beam code (see Section 2.2).

The static perturbation method uses Taylor series to represent the incre-

mental displacement vector &Q and the incremental load vector &P

LP= Ps 1  S + ?~

-QS G s + 5. +
z Q

where ( ) denotes differentiation with respect to the path parameter S. It

is convenient to represent the P derivatives as follows:

so that

, p= p" + + -.
&P PO. -A. '

and to set PO equal to the load increment

Al



such that

s -S J6. =

The values of the Q derivatives can be shown to be given by

A. K

in which K is the tangent stiffness matrix and K and K are, respectively, the

first and second derivatives of the K matrix with respect to the path param-

eters (accomplished by chain-rule differentiation: o /,6S -(bK / Q). ).

The solution process requires solution first for Q, followed by calculation of

K, followed by calculation of, in order, Q,'K, and finally, Q. The Taylor

series then gives the value of the vector LQ.

The load-based path parameter sets

S-1

and allows calculations of hQ immediately that Q and Q are known. The first,

second, and third order approaches retain, respectively, the terms S, S2, and

S . This is a relatively simple approach to implement.

The deformation - based path parameter is much more complex because the values

of A,,k,J, and S are unknown. This approach is based on the definition of S

below, using the tangent stiffness matrix,

SK &Q.
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where ( )T denotes the row-vector (transpose). Thus, S is roughly propor-

tional to the incremental displacement ampiitude. To explain the solution

process for this case it is necessary to make a number of definitions, as

given below.

,°- K(. ° ) (evaluate K with Qo in place of Q)

p - ko (t i Q K ?

(evaluate K with QO in place of Q in the Q -
dependent part of K, called K1 )

_ <' - (A) (evaluate K" with Qo in place of Q in the Q -

dependent part of K, called here K2)

((,o%) (evaluate K with Q1° in place of U in K2

with these definitions,

and (see equation for),
.k + U W 2.JLJ w") +

It is convenient to rewrite this as 3!

where the various "PN° ' are derived by substitutions for the various "K" type

matrices above.

Finally, we define the vectors

QkQ . ( 2.P1 - P.i-)
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with the result

It is seen that the entire evaluation depends on knowingj.,:-%A and S.

These values can be computed (with much difficulty) from the basic definition

of S2 given above. The equations are compliLated are are omitted here. The

final result is

The second order procedure keeps only S2, and the third order procedure keeps

3
both S terms.
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APPENDIX B

Euler Angle Theory for Beam Element

This Appendix describes the use of Euler angles in the determination of the

deformations of beam elements, emphasizing the physical nature and basis for
this approach. The derivation of the strain-displacement equations in terms

of the Euler angles is also described briefly.

Figure B1 shows a beam cross-section ini the initial undeformed state. The

section is shown rectangular only to aid visual clarity. The xyz triad is

oriented such that x is the beam centerline and the y and z axes are the axes

of bending. The shear deformations associated with bending occur in the xy

and xz planes.

A
y

y

Ai
Xt

z x

Figure B - Undeformed Section Figure B2 - Deformed Section

.-Al A I
Figure B2 shows the cross-section after displacement. The triad xyz has

A A

followed the motion of the section, as described below. This "convected" xyz

triad is orthogonal, but, as will be shown below, is not truly "imbedded" in
AAA

the material. The xyz triad is carried into the xyz triad by means of the

sequence of Euler angle rotations, in the following manner.

Allow first a rotation 41 of the undeformed section about the x axis, as

shown in Figure B3a. This results in a new triad, denoted in the figure by

x'y'z'. Of course, x' and x are identical.

Bi
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Figure 83 -Euler Rotations
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Next a rotation 12 takes place about the y' axis, resulting in a new triad

x"y"z". Finally, a rotation about z" results in the triad xyz which

describes the deformed orientation of the cross-section. The angles A 1 2'

and JS3 are Euler angles. They are restricted to the sequence of axes (1-2-3)

in the special meaning and sequence illustrated. For the general case, there

are 12 possible Euler angle sequences, but only the (1-2-3) sequence described

above is needed for the present discussion. The importance of this rotation

description in the present application is that it: (1) fully accounts for the

effect of large rotations in reorienting the beam cross-sectional axes; (2)

avoids any errors due to cartesian rotation incrementation.

The three Euler rotations are not in general those of conventional beam twist

and bending, although for small total rotation magnitudes they are indistin-

guishable from these quantities. For large rotations they are not correctly

viewed in this way, however, and for this reason it is incorrect to attribute

the beam twisting and bending stifness properties to the rotation values 61,

2' and 13 . Derivation of the beam twist and bending moments instead are
derived by a rigorous process described later. While the Euler angle repre-

sentation has the advantage of rigor, it does not provide a fully satisfactory

deformation description from a physical viewpoint. To obtain the needed

physical interpretation, it is necessary to compute small incremental rot--

tions about the beam bendir.g and twisting axes, superimposed on a previously

accumulated large rotation state. Figure B4 attempts to illustrate this view

of the deformation. The figure shows the deformed section with the associated

triad xyz. The triad is essentially identical with the beam section axes and

centerline, deviating only slightly from these axes due to the shear strains
(angles of the order of 0.3 degrees). The figure indicates that a sma'l

rotation superimposed on the section in its xyz orientation can be viewed in
two ways: as a cartesian rotation taking place about the A A Ax,y, and z axes, or

as an increment in the Euler angle values 61, 142, and A 3. The S '

i #2' and S,3 must be viewed as taking place about the axis systems which

were defined during the entire deformation process-the xyz and x'y'z' and

x"y"z" systems. This is indicated in the figure. These rotations are not

physically meaningful, but can be used in a mathematically rigorous way to
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Figure B4 - Small Superimposed Rotations

describe the nonlinear deformation state. On the other hand, the cartesian

small rotations ;e-, c , and gBA are physically meaningful because

they indicate increments of twist and bencing deformation; and in dynamic

analysis they are correctly associated with the beam cross-section rotational
inertia properties. To combine the rigorous nonlinear deformation description

with the physically meaningful one a special type of geometrical transformation

is available. This is expressed by

The IT matrix is a function of the total accumulated 0,1 A2' and 1 3 . A

suitable nonlinear analysis approach must be based on deformations described

rigorously by el, 82' #3 and SR 1  C 2' S13 and in addition contain

transformations to provide numerical results in the form gig, Se, I .

The 17 matrix is the means for accomplishing this.

A refinement of the above approach cah be made to eliminate the small approxi-
A Amation in the meaning of the C9 values which is due to the fact that the xyz

triad is not truly identical to the conventional beam twist and bendingaxes.
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Figure B5 shows a beam cross-section with a large shear deformation. The

actual "material" cross-section is shown with the heavy

Y Section With Shear
Deformation Removed

(Wz( Triad)

True Orientation of

, \ \ Deformed Section ( ql Triad)
Ax

z

Figure B5 - Beam Cross-Section Local Coordinate Systems

lines. The light dashed lines show the section with the shear deformation

removed; the displacement vectors show the small cross-section motions neces-

sary to remove the shear angles. The section bisecting axes are shown for
1AA

both cases as an aid to pictorial clarity. The triad xyz coincides with the

"material-y and z" cross-section axes; it is shown by the very solid heavy
A

coordinate axis lines. The x axis does not coincide with the beam material

centerline. The triad xyz coincides with the section material-y and z axes

with the shear deformation removed. Since this section is normal to the beam

centerline, the " axis is colinear with the centerline. The ' 'y triad is
shown by the very heavy dashed lines. It is desirable to keep track of the xyz

triad in the solution process, because small cartesian rotation increments

referred to this triad are precisely the "nominal" section twist and bending[ rotations. This is easily done as follows: first presume that Euler angles

SMI9 #M2' #M3 define the triad ^'6'; then (1) compute the (see fig. B4)
rotation increment GeA, Ea.%, CeO; (2) compute the Euler increment

x y
i €I, I #2, £t 3 using the i matrix and sun to obtain the total P 1, #2'

03; (3) from the strain-displacement equations, compute the shear strain

increment; (4) subtract this increment from the Ge- and Se values, call-

ing the results SeM and &eFo (these are the bending rotation increments

B5

,.. ... . ...



which correspond to conventional beam theory); (5) using the ITM trans-

formation (the IT -type transformation which is computed using the Euler

angles (PM1' OM2' PM3)' compute the incremental values ceM1' C1M21

SOM3; (6) sum to compute the total values 8M,, gM2- M3 This procedure

maintains the totals of two sets of Euler angles: fi (21 (53 defining the

xyz triad (needed to compute the deformations); and eM1' tgM2' PM3 defining

the xyz axes, which are the conventional (convected) axes of beam theory.

This Appendix closes with a brief outline of the procedure for the derivation

of the nonlinear strain-displacement equations. These are derived in terms of

the Euler angles 01 P21 /3 because only these angles provide a rigorous

representation of the total rotations of the beam material elements. The beam

centerline has the displacement vector qj.* Denoting by a..jthe basis vectors

of the undeformed beam element, and by xi the initial undeformed coordinates

of the element, the initial undeformed beam centerline has the position vec-

tor, respectively,

The vector V is defined to be the additional displacement of a material

point which is off the centerline. Hence for an arbitrary point of material

on a beam cross-section,

R~ (~-~.u.C); -4 V

The Euler angles are used to define V . Referring to Figure B3 and defining

the basis vector sets C i  Ct, and t'! as belonging, respectively, to

triads xyz, xlylz', and x1y"z", V can be written

It is noted that actual values of y' and y", and z' and z", respectively, for a

given point on the cross-section, are identical to the values of y and z.

This is because all of these coordinates are defined by "following" the
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material. Hence, with y, and z interpreted as initial coordinates of a point

on the beam cross-section, V is more simply written

The values of xL-i and a 1 can be represented in terms of the initial basis

vectors CLi , and the Euler rotations n and 3 The derivation is

lengthy, and is not given here. The result is

The value of the position vector R is now known for any point on the
element, in terms of the centerline displacement uki , the Euler rotations

9i, and the "material" coordinates x,y, and z. By differentiating IR with

respect to x, y, and z, there are obtained an important set of vectors, called

the basis vectors of the deformed material coordinate system. These vectors

contain a complete description of the deformation state. It is seen that
thesc W-.i vectors contain derivatives of the Pi and the i with respect to
the x, y, and z coordinates. The x-derivative, in particular, is important i0

defining the deformation of the beam element. The theory of the derivation

process follows reference 13. Simplifying approximation can !;_ made, and the

details and results are too lengthy to include here. It is simply noted that

this means of developing the strain equations is exact and includes all of the

effects of nonlinearity.

The brief description of the nonlinear beam deformation given above has the

purpose of illustrating that the deformation is dete.-mined in terms of the

Euler angles rather than in terms of conventional cartesian rotations. This

formulation is r 'ous for large rotations and does not suffer any inaccu-

racies due to snming angular motions.
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APPENDIX C

Summary of Proposal for Contract F49620-79-C-0057

This Appendix contains the Technical Approach (Section 2) and
two appendices from "Technical Proposal - Program for Nonlinear

Structural Analysis", submitted to AFOSR in August, 1978. This
proposal is the basis of the current AFOSR contract on nonlinear

finite element research. The discussions herein are intended

to provide background and supplementary information supporting

our present report.
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2.0 TECHNICAL APPROACH

The technical approach builds on existing research results. The element

technology to be used is basically that of the stability elements (Refer-

ences 1, 2, 3). The solution procedure technology will be based on the

nonlinear-step static perturbation procedure (References 4, 5, 6). The

static perturbation procedure has been demonstrated to be a superior

solution method for strongly nonlinear static problems. For dynamic

analysis, an extension of the procedure has been developed in the current

AFOSR contract. Numerical data demonstrating the superiority of this

approach are given in this proposal. The goal of this proposed research

is to merge these two technologies into a working pilot computer program.

2.1 Technical Requirements

The principal features required of the overall approach, in regard to

applicability to nonlinear problems, are listed below:

Element Technology (References 1, 2, 3):

1, Elements are required whose displacement function formula-

tion prevents anomalous (overstiff) behavior due to

nonlinear strains. These are called stability elements,

and utilize extended forms of axial/membrane displacement

functions, in conjunction with conventional bending

deformation forms.

2. Element strain calculations must be made on a total

strain basis, to avoid cumulative errors due to summing

increments. This is required to allow the development of

large rotations and nonlinearities.
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3. Element displacement functions must be referred to

convected coordinate systems. This avoids exchange of

axial/membrane and bending displacement roles (e.g., u

and w exchange meaning as the rotation becomes large) in

the large rotation state, and permits the simplifying

assumption of shallowness in forming the nonlinear strain

equations for shells or highly deformed beams and plates.

4. Residual force evaluation and equilibrium corrections

must include the effects of element strains and geometry

changes.

Static Solution Procedure Technology (References 4, 5, 6)

1. The characteristic problem of excessive residual forces,

with consequent slow convergence or divergence in problem

solutions, must be avoided while retaining reasonably

large step size. This requires the use of a nonlinear

stepwise solution procedure.

2. The solution procedure must be compatible with the

stability elements, in particular with the convected

coordinate system approach.

3. The solution procedure should include a means of auto-

matic, internal, computation of step size. Gains in

solution economy from this feature can be very large.

Dynamic Solution Procedure Technology

1. As noted above, the method must incorporate a nonlinear

step. Automatic, internal step size selection should be

incorporated insofar as is possible.

2. The solution procedure must be compatible with the

stability elements, particularly as regards the convected

coordinate system and the residual load calculations.

Ci
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3. The solution procedure must not require stepwise inver-

sion of the structural stiffness matrix. Instead, inver-

sion of the mass matrix must be used, for reasons of

economy.

The proposed technical approach meets all of these goals. All of the

technical developments required ini the proposed research are reasonably

well proven as regards accuracy and practicability. Hence, their merging

into a single computer program appears to involve little risk. The

major gains from the proposed work should be in the matter of evaluation

of the overall technical approach on specialized problems. The particu-

lar types of problems for which this approach is required have the

following characteristics:

0 The equilibrium is governed primarily by nonlinear axial/mem-

brane stresses induced by bending rotations.

o The axial/membrane stresses vary rapidly over the structure.

An example is the type of buckle pattern which occurs typi-

cally in axially compressed cylinders, in higher vibration

modes of beams and plates, and in short wave length vibration

of shells. This includes also structures which undergo a

near-uniform nonlinear axial/membrane stress, due to boundary

constraint. However, this type of problem can often be

solved adequately with conventional methods.

o Boundary constraints on stretched membranes, plates, and

shells can cause rapidly varying local rotations and nonlinear

strains at locations where the boundaries undergo sharp shape

changes (corners, etc.). Hence, this type of problem requires

the stability type of element in cases where accurate stress

analysis within these zones is desired.
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o Prediction of instability behavior in general requires a

nonlinear-step type of solution procedure. The effects of

nonlinear effects such as mode switching, limit points, snap-

through, and buckling influenced by prior information, are not

usually amenable to eigenvalue analysis. The alternative of

asymptotic instability analysis involves very difficult calcu-

lations. For either case a competent nonlinear step procedure

is required to obtain problem solutions. The case of follower

loads also falls in this category.

o The important problems of nonlinear oscillations (e.g., limit

cycle predictions) are not generally solvable analytiully.

V The finite element approach with a competent nonlinear dynamic

solution procedure probably offers the only practical approach

to this problem. This approach can evaluate nonlinear respon-

ses for the "almost periodic" case as well as the true peri-

odic case, and thus provide much information about dynamic

behavior and potential large amplitude dynaic responses of

nonlinear structures.

2.2 Technical Method Descriptions

This section outlines briefly some of the details, and prop'sed modifica-
tions, of the technical methodologies to be merged in this cz.ntract:
the stability elements; and the static perturbation nonlinear stepwise

1 method, as applied to static and dynamic problems.

Stability Elements: The present computer program (References 2, 3) for

the stability elements (hereinafter called HMN elements, as in these

references) has demonstrated superior accuracy, as compared to conven-

tional elements, for the case of large bending deformations. In addi-

tion, the original work of Haftka, Mallett, and Nachbar (Reference 1)

showed that a marked accuracy gain was obtained from the stability-type

of beam element in application to buckling solutions for beam-columns.

The basic cause of the accuracy improvement gained from the stability

CS
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and HMN elements is that, due to the "strain-smoothing" enforced on the

nonlinear strains by the high order membrane/axial displacement func-

tions, the elements' strain energies are reduced to near minimum values,

consistent with the magnitude of the overall deformation state. Since

the improvement is effected through the membrane strains, to which cor-

respond very large stiffness terms, thc accuracy gain can be very large.

In the case of stepwise linear, nonlinear problem solutions, the gain is

effected through the residual load magnitudes. In the case of eigen-

value solutions, it occurs in the eigenvalue itself.

The extension from one-dimensional (Reference 1) to two-dimensional ele-

ments (References 2, 3) creates many difficulties in applying the origi-

nal stability element concepts. This difficulty resides primarily in

the fact that the added, higher order, membrane displacement functions

(the basic approach of the stability elements) are nonzero over the

entire two-dimensional element, including its boundaries. If one B
attempts to minimize the strain energy on the elemental level, which
would be a relatively simple task, in general inter-element displacement

incompatibilities will b,. created. The alternative is to derive speci-

fic, explicit constrairs on the added functions, such that specific

higher order terms in the strains (Ex' , xy) are set to zero, without

violating inter-element compatibility. This alternative becomes very

complicated, but nevertheless was the one adopted in the HMN element

work of references 2 and 3. The work was very successful for large

bending deformations, and less so for large torsional deformations. The

reason for this is that the specific higher order membrane functions

which compensate for large torsion (nonlinear Yxy) may in some cases

cause undesirable higher order direct strains cx and c The reouire-

ment to allow arbitrary element orientations relative to any structural

deformation pattern causes this difficulty to go both ways: HMN com-

pensations for large torsion may create undesirable direct strains; HMN

compensation for large bending may cause undesirable shear strains. The

physical meaning of this situation is that either large bending or large

torsion will in actual practice cause a trade to occur between higher

order shear and direct membrane strains, such that the structural poten-

tial energy is minimized. The failing of the HMN elements of references
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2 and 3 is that they deal with the strains separately, rather than with

the total deformation state.

There are several alternatives for continuing work on the present ele-

ments. First, it is recognized that they per', orm well as they are cur-

rently formulated. They might perform better with the torsion-membrane

shear interactions removed, which would be very simple to accomplish.

Finally, a method for obtaining the shear-direct strain "trade" could be

devised and implemented. It appears that before any of these alterna-

tives are pursued, another option should be investigated. Figure 1

shows an isopar'ametric quadrilateral (of the general type of Reference

9) which has a special relationship between nodes and displacement

freedoms. The element has 17 nodes, of which only 8 nodes are used to

define the bending freedoms, and all 17 are used to define the membrane

freedoms. This element will have higher order membrane strains, to

compensate the nonlinear strains due to bending and torsion, by virtue

of its extra 9 membrane only nodes. Thus it is basically a stability

'I element in the sense defined by reference 1. The element has an advan-

age over the HMN elements of references 2 and 3 because its higher order

freedoms are nodally defined, and thus can be committed to the global

solution process without creating inter-element incompatibilities. The

displacement functions for the 8 node bending behavior will be those of I
references 2 and 9. Those for the 17 node membrane functions will

follow the conventional forms for isoparametric-elements. It is proposed

to use this element in the research described herein.

Figure ) also shows a beam element which will be developed. This

element differs from conventional beam (cubic displacement) elements.

It has identical displacements to those of one side of the quadrilat-

eral. This will make the two elements nodally compatible in problem

solutions.

The work of references 2 and 3 includes many features which are not

dependent on the explicit strain constraints of the HMN elements. These

include the developed solution procedure details, geometrical transforma-

tions, and nonlinear shell equations. All of these are applicable to

the element of Figure 1, and will be retained in the proposed work.
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The updating (or cunvection) of the element coordinate system is pres-

ently done for every iteration of every solution step. This is costly,

and is not always necessary, as this set of transformations is only

important when significant rotations have occurred during the step. It

is proposed to make this updating conditional on the rotation magni-

tudes. The residuals will be referred to the start-of-step coordinate

system unless the updating is found to be required. In addition, it

appears that when it is necessary (rotations are large) to update the

element coordinate system, also the solution coordinate systems and the

stiffness matrix should be updated. The programs have this feature

.already and it is simply necessary to make the implementation condi-

tional on the coordinate system updating. The changes to be made will

cause the updating to be done infrequently, conditional on the rotation

magnitudes being of the order of 150. This will reduce costs consider-

ably without degradation of accuracy.

Several features of the present nonlinear element formulations which

have proved particularly effective and will be retained are listed

below:

o The iteration procedure which alternates axial/membrane and

all-freedom iterative corrections will be retained (unless it

is shown to be unnecessary due to the use of the nonlinear

step solution procedure).

The conditional updating of the geometric stiffness matrix,

based on the magnitudes of the residual stresses, will be

retained.

o The convected coordinate system approach will be retained.

o The user-option of over-riding the internally computed solu-

tion coordinate systems is needed for generality of boundary

condition specification in the nonlinear case, and will be

retained.
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o The shallow-shell formulation will be retained.

Further development of the triangular HMN element is not proposed herein.

This element has the recognized difficulty of inter-element bending

slope discontinuities. While this effect is not always necessarily a

bad one, it has complicated the handling and interpretation of residual

loads in the stepwise solution of nonlinear problems. It is noted how-

ever, that the triangular element appears to be nearly free of the

difficulty regarding bending/torsion and shear/direct strain inter-

actions which are described above. Thus, it may ultimately turn out

that the triangular HMN (BCIZ-Reference 8) element merits further work.

Nonlinear Step Static Solution Procedure: The nonlinear step capability

will be developed based on the "Static Perturbation" method. This

method was described by Sewell (Reference 4,) and extended in a cost

effective manner to finite element applications by Vos (References 5,

6). In this procedure the nodal displacement vector is expressed in

Taylor series form in terms of a path parameter. Displacement deriva-

tive vectors fnr use in the Taylor series are determined from solutions

of successive differentiations of the equilibrium equations, using the

system tangent stiffness matrix. Problem solutions are determined from

the Taylor series expansion. The residual load method is still used to

assure close conformance to the equilibrium path.

This nonlinear step approach allows solutions to be continued through

limit point instabilities. The method can incorporate both material and

geometric nonlinearities, as well as the effects of nonconservative

follower-type forces. The only matrix decomposition required is that of

the system stiffness matrix, and this is only required once per step.

Techniques will be developed for selecting appropriate step sizes. It

is proposed that both second order (quadratic step) and third order

(cubic step) approaches be incorporated and compared for relative effi-

ciency. Appendix A gives the basic equations of the static perturbation

method for .: case in which quadratically varying in step solution

variables are retained. Appendix B gives formulas for the nonlinear

C.
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stiffness matrices, in terms of element displacement forms and material

property matrices.

Figure 2 shows results computed for a simple nonlinear problem, comparing

quadratic static perturbation solutions and Newton-Raphson (piecewise

linear) solutions for two step sizes. The static perturbation procedure

is seen to converge, with decreasing step size, much faster than the con-

ventional piecewise linear method. Also shown is a result computed with

the static perturbation method using automatically varied step sizes,

computed during the solution by the formula &S = constant x (Q/Q). The

resultsare excellent. The figure notes the numbers of steps computed

for each plotted curve.

For use with t)ie convected coordinate system procedure (updated total-

Langrangian formulation), the static perturbation method must accomplish
coordinate trar:sformations on the in-step nonlinearity matrix (. - see

Appendix A). The proposed method for accomplishing this is as follows:

Solution variable rates are computed in solution or global system:

Transform to element baseplane system

Evaluate elemental matrix Plk.j

(see Appendix A, Equations A4, A5)

Transform to solution or global coordinates

Plk-4 I PIK.

Form PI * (PIK.) 0

This procedure avoids the requirement to transform the third order tensor

quantity Plk. The transformation of P1k.4 is a simple stiffness matrix

transformation, using a conventional coordinate transformation matrix, T.

ClO
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Nonlinear Step Dynamic Solution Procedure: There are many different

forms of discrete step solution procedures in use for solving transient

dynamic analysis problems. For the most part these methods are based on

using the set of previously computed solution steps, together with the

differential equations of motion, to predict the solution values at the

end of the current computation step. The stepwise equations used are

based on either difference formula representation of timewise deriva-

tives of the unknown variables (using past and future solutieA sets), or

on interpolation formula representation of these variables (again using

past and future solution sets) with corresponding analytical representa-

tions of the time derivatives. In all cases the equilibrium equations

are forced to be satisfied, in terms of solution variables at discrete

time points, at a particular point in time. The choice of this time

point is such that the unknowns to be aetermined, i.e., displacements at

the (n+lY)t time point, appear in the discretized equations. The dif-

ference formula and interpolation formula approaches are closely related,

but in general lead to different equations, and hence to somewhat differ-

ent numerical results in applications. Other distinctions between these

methods include whether the equations are implicit (solution requires

iterations at each time point, because equation coefficients are depend-

ent on future points), cr explicit (solution steps do not require itera-

tion because equation coefficients are only dependent on past points);

and also what order of derivatives are employed in the equations of

motion. Regarding the latter options, one can, for example, simply use

the second order equation of motion,

M= P - KSQ

or employ further differentiations to obtain, in addition,

MQ P-KT 2

MQ =P- KT Q -KT Q 3
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In these equations, Ks and KT are, respectively, the structural secant

and tangent stiffness matrices. A further important consideration

relative to these solution procedures is whether, at each solution step

(and perhaps at each iteration of implicit methods), the computatioos

require only the decomposition of the structural mass matrix, or alter-

natively, a decomposition involving the mass and stiffness matrices.

The latter is generally the case for implicit methods, and is very

costly in practical numerical work.

The implicit methods in some instances have the advantage of uncondi-

tional stability as the time steps are increased in size, 'while the

explicit methods become unstable for particular step sizes (of the order

of the half-period of the highest frequency components of the structural

system). The advantage of the unconditional stability is that the

highest frequency structural actions of a finite element model (which

can be of very high frequency for fine discretizations) will be "damped"

to a near zero amplitude in problem solutions. However, particularly

for nonlinear problems, obtaining good solution accuracy may require

smaller time steps for properly representing rapidly varying structural

behavior than would be required to satisfy stability criteria for the

integration procedure. Thus it. appears that the implicit methods,

requiring costly stiffness matrix decomposition, may not be optimum for

nonlinear dynamic analysis. In addition, the implicit methods impart a

numerically-induced artificial damping to problem solutions, which in

itself requires the use of small time steps to avoid excessive energy

loss due to the artificial damping effects.

References 7, 12-16 discuss various solution procedures of the general

types described above. The discussions in these references are for the

most part mathematical in approach. In order to put such methods in

perspective, a particular procedure, called the Houbolt method (Reference

16) and generally considered to be a superior method, has been used to

solve a simple nonlinear problem. Figure 3 shows the numerical results

for several time step sizes. The solution involves iterations at each

time point, and the data shown are iterated to obtain fully converged

Cl12
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results. It will be seen in later discussions that the accuracy of the

Houbolt method, at least in this particular nonlinear problem, is not

particularly good, and can be improved on by simpler methods. The

Houbolt method is described in Appendix A.

A basically different type of formulation starts from the representation

of the solution as a Taylor series. In this case the solution at the

(n+l) st time point is based on its derivatives at the nth time point.

This approach offers a number of advantages: complete freedom to vary

time step size during the solution; solution behavior governed by the

mist recent structural behavior, rather than by extrapolation from past

behavior; simple extension to higher orders of approximation, even dur-

ing a problem solution, without changing the basic solution equations;

ability to handle in-step nonlinearity without the use of an implicit/

iterative solution method (only the mass matrix needs to be decomposed).

This approach is analogous to the static perturbation procedure, and the

relevant equations are given in Appendix A. This approach is proposed

for the subject research and computer program development.

The Taylor series representation approach, called herein the "dynamic

perturbation method", can be formulated to make use of the second order

equilibrium equation, plus an arbitrary succession of higher order equa-

tions obtained by differentiating the basic equation. Through the

higher order derivatives, more complete information describing the

variation of the forces acting during the computation time step is

incorporated into the solution. This is clearly seen in Equations 1-3,

in which KT represents the effect of variable force at constant stiff-
ness, and (T ' is the first term which represents the effect of in-step

structural nonlinearity. Equatio ,, 1-3 can be solved for Q, Q, Qiv,

etc., requiring only decomposition of the mass matrix, M. These deriva-

tives, evaluated at time tn are used in the Taylor series (about tn)

through which the solution at time tn+l is computed. The simplest

option, using only Q, does not generally provide accurate problem solu-

tions. Including Q', or Q and Qiv, causes the results to be very accurate,

even for time steps approaching the stability limit (At% 1/2 period) of

the formulation.
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The inadequacy of the lowest order "dynamic perturbation" method is

easily remedied by a slight change in formulation, described in Reference

15. The resulting particularly simple method, called the "acceleration-

pulse" method (Reference 15), offers probably the most cost effective of

the available solution procedures. This method achieves its excellent

accuracy by compensating errors, as described in Appendix A. Since it

is only a zero'th order method (based on Q only), only simple calcula-

tions are involved, and the method does not include effects of in-step

nonlinearities. Nevertheless, because of its ease of use, economy and

good accuracy, it is felt that this method should be included in the

subject program development, and it is proposed to include it as a user-

optional choice, along with the Taylor series, or "dynamic perturbation",

method.

Figure 4 illustrates the acceleration pulse method and the "dynamic

perturbation" method through the 4th derivative for a simple problem.

In this problem, the approach keeping wiv is essentially exact, as

proved by solutions obtained with a set of smaller time steps. The data

illustrate elastic, plastic, material failure, and load discontinuity

induced behavior. The superiority of the higher order method, which

includes both linear and nonlinear in-step force variation, is seen to

be greatest when some degree of discontinuity of load or stiffness

behavior is present, particularly when the discontinuity is an added,

positive load. Even in this caR,% however, the excellent accuracy of

the acceleration pulse method, in relation to its simplicity, is clearly

seen. The Houbolt method (Figure 3) was seen to provide mediocre

results in comparison with the "dynamic perturbation" method, even for

the simple elastic case.

It should be noted that the simple, one-degree-of-freedom example may be

somewhat misleading. Judgement suggests that more severe calculation

difficulty, with attendant greater accuracy requirements, would be pres-

ent in multi-degree-of-freedom problems, particularly when material

yield or failure occurs, resulting in growth and contraction (unloading)

of failure/yield zones. Difficulties related to this type of behavior
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have previously been encountered with the "acceleration-pulse" method

(Reference 17).

Reference 7 uses an implicit, interpolation-type, solution procedure

retaining u" to solve inelastic problems of beams and shells. The method

is related to the Houbolt method. Despite the complexity and inherent

cost of the method, small time steps were apparently required to obtain

accurate solutions. This may suggest that some sort of "dynamic residual
load" concept would be a valuable asset with this, and probably other,
solution procedures. Such a residual load method will be investigated

as an option in the proposed computer program.

The goal of the proposed research is to handle nonlinear dynamic problems

with relatively large time steps (of the order permissible for linear

problems, governed by solution stability criteria), while using a solu-

tion procedure which only requires decomposing the mass matrix. The

latter assures a method which is both fast and simple. The approachs 

proposed (dynamic application of static perturbation procedure, and the

acceleration pulse method, Appendix A) provide these desirable features.

In addition, the first. method lends itself to the automatic computation

of time step size, based on specified accuracy criteria (using ratios of

time derivatives of solution quantities). In most problems, this can

yield considerable savings in computing costs.
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APPENDIX A

This appendix briefly describes the equations of the numerical stepping

procedures (static and dynamic) considered in this proposal. In the

equations given, the following definitions hold (matrix notation omitted).

Q = solution vector (colur~a matrix)

P = load vector (column matrix)

M = mass (square matrix)

Ks,Kr = secant and tangent stiffness (square matrix)

C = damping coefficient (square matrix)

At = incremental time or incremental path parameter

P1 - load vector which accounts for in-step internal structural

loads due to nonlinearity (column matrix)

P1K = the rate of change of KT, due to nonlinearity (third order

tensor, or "cubic matrix array")

C ),(),etc. = denotes time or "path parameter" derivatives

( )u = denotes the nth time point or path parameter point

Static Perturbation Method (through Q)

The starting equation is the equilibrium equation

P KSQ Al
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Successive differentiations yield

P KsQ + KsQ KQ A2S S TQ

P = KTQ + KTQ-KQ+Pl A3

where PI can be written as

P1 = (PlK.Q) Q A4

and KT = PIK.Q A5

Solving for the derivatives of Q,

Q = KTI A6

Q K (P- PI) A7T

It is noted that only KT needs to be inverted (decomposed), even

though the equations contain the effects (through Pl) of structural

nonl ineari ty.

The final solution is obtained by a Taylor series stepping process

in which Qn+l is computed from the previous step solution Qn and the

start-of-step derivatives (Equations A6, A7) Qn' 6n

Qn+l Qn +  Qn at + 1/2 Qn (6t)2  AS

C23

H -"



The procedure can be used retaining only Qn, in which case it is equiva-

lent to the simple, and usually inadequate, piecewise linear Newton-

Raphson procedure. The real accomplishment of the static perturbation

methods lies in including the higher derivatives. It is noted that, by

retaining Pi, Q'can be included, and similarly even higher derivatives
can easily be included. See Appendix B for closed form equations forI
nonlinear stiffness matrices.

Dynamic Perturbation Method (through Qiv)

The starting equation is the second order equation of motion, with time

the path parameter,

MQ = P - K Q - CQ A9

S

Differentiating, and solving for successive derivatives,

, -Q iP - KsQ - CQ) AlO 4
Q = M-' [P - KTQ - CQ.- C] All

iv = M 1 [ KTQ . Pl - CQ- 2CQ -CQ A12

The Taylor series about time tn gives the solution at tn+l

Q Q + + (At) I + *6 (A) + QiV 6t4 A13
=~ Wn + n ~ n -7- nl _T n -7r

(At 2 .iv (At) A
Qr.+l n n t *f -T + Qn 61

It is noted that in the dynamic case, both Qn+, and Qn+l are solved for,
in order that the succeeding steps can be handled as an initial value

problem.

If terms are only retained through Q, the method is not accurate. The

physical reason for this is that the computed value of Qn+l consider:
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only a constant acceleration through the step - i.e., a constant-force

step. This is not adequate for even linear analysis. If terms are

retained through Q, the method has effectively retained in-step linear

force variation, through the teri KTQ. This level of approximation has

been found to be very accurate for moderately nonlinear behavior.

Retention of Qiv includes in-step nonlinearity and further improves

accuracy for strongly nonlinear behavior.

"Acceleration Pulse" Method

This method can be derived from Equation A9 (without the damping term) by

using a central difference formula for Q, and representing the start-of-

step velocity Qn by a backward difference formula. The result is equiva-

lent for a rather surprising modification of Equations A13 and A14, as

follows:

Qn+l 0Qn + 6* At+Qn 2 n 2

n+1= (Qn+l - Qn) /At Al6

The starred quantities indicate approximate velocities. The appearance

of the extra acceleration term in equation A15 compensates for the error

incurred by the backward difference representation of the velocity in

Equation A16. It can be rather easily seen that

Q Q + Qn(At)2  A17
n n 2 n

with the result

Qn+l = Qn + Qn At + Qn Al8

Q+l (Qn+l " Qn) /At Alg
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Equatiun A18 differs from Equation A13 retaining only through Q in that
Qn in A18, obtained from Equation A17, is much more accurate than the

corresponding term in Equation Al3.

The acceleratiun pulse method achieves truly outstanding accuracy, in

consideration of its simplicity, even for quite large step sizes. The

means of including damping while maintaining the internal error compensa-

tion featiire of the method is not developed as yet.

Houbolt Method (four point backward difference)

The Houbolt method uses a four point interpolation formula for Q, based

on the unique cubic polynomial passed through four equally spaced points

QQ L_ tr ll 3 1QI

tI 1Q I
at nn-3 2 n-2 + n- + 2 n

+ )3 Q 1 1
+ At 6 n-3 2 n-2 2 n-l 2 n

Differenti.iting this formula to obtain ~niand nladsutitngn

Equation A9 yields

EM + -1 t-tC + T. (6t)2.K5 S I n+l ~-(At)2P l
n+l n+l n+l

Eai n 2 yields

Qn-2+ - 1-
Use of this equation requires inversion (decomposition) of the quantity

[M + At Cn+l + (At)2KS j,

n+l

which makes the method implicit, as Ks  is not generally known until

Qn+l is known. Solutions are obtainedn, iteration.
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APPENDIX B

This appendix briefly describes the equations required for the elemental

level forces and stiffness matrices, and their derivatives, for nonlinear

problems. In the equations given, the following definitions hold (matrix

notation omitted):

q = element freedoms (column matrix)

a = stresses or stress resultants (column matrix)

= Lagrangian strains or curvatures (column matrix)

e = spatial derivatives of displacements (column matrix)

D = material stress/strain relation (square matrix)

AO = linear terms for Lagrangian strain definitions (rectangular

matrix)

Al = nonlinear terms for Lagrangian strain definition (3rd order

tensor, or "cubic matrix array")

A = terms for nonlinear Lagrangian strain rate definition

(rectangular matrix)

B strain/displacement rate relation (rectangular matrix)

G = element shape function derivatives (rectangular matrix)

kT = element tangent stiffness (square matrix)

pl = element nonlinear structural force terms (column matrix)

(.), (), etc., denote time or "path parameter" derivatives
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The equations for elemental level force and stiffness quantities can be

derived in a straightforward manner, based on virtual work. The basic

relations are provided here. The stress/strain relation is given by

a-Dc BI

This equation is formulated so as to inc'hude treatment of sandwich and

nonisotropic materials. The quantities in Bl, as well as the element

displacement (shape) functions and displacement derivatives, are evaluated

at a series of numerical integration points within the element. The

displacement derivatives e are given by

e = G q B2

Strains are defined by

= (AO + 1/2 Al 8) e B3

and strain rates by

= (AO + Al 8) A B4

Combining B2 and B4 provides

=AGq Bq B5

The virtual work formulation leads to the expression for element nodal

forces, in terms of a numerically integrated volume integral

p V GA dV J B adV B6

V V

Substituting Bl and B3 into B6, and differentiating, provides the first

order (tangent stiffness) relation
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where

kr 'VG(aAl + ADA) GdV B8

Here kT is a symmetric matrix due to symmnetry properties of Al. Differen-
tiating B7 provides the second order relation for the element

p B9

where

p1 skq 810a

In an expanded but perhaps more comnputationally advantageous form

P1 JV GD (2Ale + AAle)dV BlOB
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